Semi-Nonparametric Estimation of Random Coefficient Logit Model for Aggregate Demand-厦门大学金融系

Semi-Nonparametric Estimation of Random Coefficient Logit Model for Aggregate Demand
主讲人 Zhentong Lv 简介 <p>In this paper, we propose a two-step semi-nonparametric estimator for the widely used random coefficient logit demand model. In the first step, exploiting the structure of logit choice probabilities, we transform the full demand system into a partial linear model and estimate the fixed (non-random) coefficients using standard linear sieve GMM. In the second step, we construct a sieve MD/GMM estimator to uncover the distribution of random coefficients nonparametrically. We establish the asymptotic properties of the estimator and show the semi-nonparametric identification of the model in a large market environment. Monte Carlo simulations and empirical illustrations support the theoretical results and demonstrate the usefulness of our estimator in practice.&nbsp;&nbsp;</p>
时间 2018-10-15(Monday)16:40-18:00 地点 N302, Econ Building
讲座语言 English 主办单位 WISE&SOE
承办单位 类型 系列讲座
联系人信息 主持人 Wei Song
专题网站 专题
主讲人简介 <p>Assistant Professor at The School of Economics, Shanghai University of Finance and Economics.&nbsp;</p> 期数 高级经济学系列讲座2018秋季学期第一讲(总第407讲)
系列讲座