Sieve Estimation and Variable Selection in Sparse Semiparametric Single Index Models-厦门大学金融系

Sieve Estimation and Variable Selection in Sparse Semiparametric Single Index Models
主讲人 董朝华 简介 <p>The talk concerns sieve estimation in sparse semiparametric single index models. The use of Hermite polynomial in approximating the unknown link function provides a convenient framework to conduct both estimation and variable selection. The estimation of the index parameter is formulated from solutions which are obtained by the routine penalized weighted linear regression procedure, where the weights are used in order to tackle the unbounded support of the regressors. The resulting index parameter estimator is shown to be consistent and sparse. The asymptotic normality of the estimator of the index and that of the link function are established. Numerical results show that both the variable selection procedure and the associated estimators perform well in finite samples.</p>
时间 2018-12-03(Monday)16:40-18:00 地点 D235
讲座语言 中文 主办单位 统计系
承办单位 统计系 类型 系列讲座
联系人信息 主持人 陈力
专题网站 专题
主讲人简介 <p><xformflag flagtype="xform_textarea" flagid="fd_360a4f3b37da04"></xformflag>董朝华 中南财经政法大学 教授<br /> 个人信息:<br /> 经济学博士,Journal of time series analysis,Journal of econometrics, Journal of nonparametric statistics, Journal of testing and evaluation and African journal of business management 等期刊的匿名审稿人。<br /> 教育背景:<br /> 博士后研究员:澳大利亚莫纳什大学(Monash University),2015<br /> 经济学博士: 澳大利亚阿德莱德大学(the University of Adelaide),2012<br /> 研究兴趣:<br /> 时间序列模型,面板数据模型,微观计量和金融计量,非参数和半参数方法.</p> 期数 高级经济学与统计学系列讲座2018秋季学期第六讲(总第110讲)
系列讲座