Counterfactual Prediction in Complete Information Games: Point Prediction under Partial Identification-厦门大学金融系

Counterfactual Prediction in Complete Information Games: Point Prediction under Partial Identification
主讲人 Joris Pinkse 简介 <div>We study the problem of counterfactual prediction in discrete decision games with complete information,&nbsp;pure strategies, and Nash equilibria. We show that the presence of multiple equilibria&nbsp;poses unique challenges for the problem of counterfactual prediction even if the payoff structure is&nbsp;known in its entirety. We show that multiple types of counterfactuals can be defined and that the&nbsp;prediction probabilities are not generally point&ndash;identified. We establish the sharp identified bounds&nbsp;of the prediction probabilities. We further propose, compare, and contrast various decision methods&nbsp;for the purpose of producing a point prediction, namely midpoint prediction, a decision&ndash;theoretic&nbsp;possibility using a Dirichlet&ndash;based prior, and a maximum&ndash;entropy approach. On balance, we conclude&nbsp;that the maximum&ndash;entropy approach is the least of several evils. Our results have implications&nbsp;for counterfactual prediction in other models with partial identification.</div>
时间 2017-01-13(Friday)16:40-18:00 地点 N303, Econ Building
讲座语言 English 主办单位
承办单位 类型 独立讲座
联系人信息 主持人
专题网站 专题
主讲人简介 <div>Professor of Department of Economics, the Pennsylvania State University.</div> <div><a href="/Upload/File/2017/1/20170106055342531.pdf"><span style="color: rgb(0, 0, 255);"><u><strong>Joris Pinkse's CV</strong></u></span></a></div> 期数
独立讲座