主讲人 |
Shuangge Ma |
简介 |
<p class="MsoNormal" style="text-indent:21.0pt;mso-char-indent-count:2.0"><span style="font-size: small;"><span style="font-family: Arial;"><span lang="EN-US">Single-dataset analysis of high-throughput omics data often leads to unsatisfactory results. The integrative analysis of heterogeneous raw data from multiple independent studies provides an effective way to increase sample size and improve marker selection results. In integrative analysis, the regression coefficient matrix has certain structures. In our study, we use group penalization for one- or two-dimensional marker selection and introduce contrast penalties to accommodate the subtle coefficient structures. Simulations show that the proposed methods have significantly improved marker selection properties. In the analysis of cancer genomic data, important markers missed by the existing methods are identified.</span></span></span><span lang="EN-US" style="font-family:"Times New Roman","serif""><o:p></o:p></span></p> |
时间 |
2015-11-10(Tuesday)16:40-18:00 |
地点 |
经济楼N302 |
讲座语言 |
English |
主办单位 |
wise&soe |
承办单位 |
统计系 |
类型 |
独立讲座 |
联系人信息 |
|
主持人 |
Kuangnan Fang |
专题网站 |
|
专题 |
|
主讲人简介 |
<p class="MsoNormal" align="left"><span style="font-size: small;"><span style="font-family: Arial;"><span lang="EN-US"> Associate Professor, School of Public Health, Yale University.</span></span></span><span lang="EN-US" style="font-size: 12pt; font-family: 'Times New Roman', serif;"><o:p></o:p></span></p> |
期数 |
统计系独立讲座 |