Generealized ARMA Models with GARCH Errors-厦门大学金融系

Generealized ARMA Models with GARCH Errors
主讲人 郑挺国 副教授 简介 <p><span style="font-size: small;">Abstract:<br /> To capture the conditional heteroskedasticity of non-Gaussian time series, this paper extends the class of generalized autoregressive moving average (GARMA) models to the GARCH type of GARMA models, called the GARMA-GARCH models. Based on Zheng, Xiao, and Chen&rsquo;s (2014) M-GARMA framework, the error sequence being a martingale difference sequence is further assumed to follow a semi-strong GARCH process. Under this semi-strong GARCH case, the solution of second-order stationarity is derived. We propose three specific models for proportional time series, nonnegative time seris, and skewed and heavy-tailed financial time series, respectively. Two estimation methods including maximum likelihood estimator (MLE) and Gauss pseudo MLE (GMLE) are then introduced for estimating the parameters. Simulation results with two examples show that the GMLE performs well and the associated parameter estimates can be used as good starting values of the MLE. Finally, three empirical investigations are carried out on realized volatility, U.S. personal saving rates and daily returns, respectively.</span></p>
时间 2014-11-03 (Mon) 16:30-18:00 地点 N303 经济楼/Economics Building
讲座语言 中文 主办单位 王亚南经济研究院、经济学院
承办单位 类型 系列讲座
联系人信息 主持人 林细细 副教授、方颖 副教授
专题网站 专题
主讲人简介 <p>王亚南经济研究院</p> <p><a href="/EventsMgr/Upload/File/2014/10/20141028075018587.pdf">&nbsp;郑挺国 CV</a></p> 期数 “WISE-SOE双周青年论坛”2014年秋季学期第三期(总第45讲)
系列讲座