Kolmogorov-Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach-厦门大学金融系

Kolmogorov-Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach
主讲人 孙佳婧 简介 <p>A popular self-normalization (SN) approach in time series analysis uses the variance of a partial sum as a self-normalizer. This is known to be sensitive to irregularities such as persistent autocorrelation, heteroskedasticity, unit root and outliers. We propose a novel SN approach based on the adjusted-range of a partial sum, which is robust to the aforementioned irregularities. We develop an adjusted-range based Kolmogorov-Smirnov type test for structural breaks in mean for both univariate and multivariate time series and consider testing parameter constancy in a time series regression setting. Our approach can rectify the well-known power decrease issue associated with existing self-normalized KS tests without having to use backward and forward summations as in Shao and Zhang (2010), and can alleviate the &quot;better size but less power&quot; phenomenon when the existing SN approaches (Shao, 2010; Zhang et al., 2011; Wang and Shao, 2022) are used. Moreover. Moreover, our proposed tests can cater for more general alternatives. Monte Carlo simulations and empirical studies demonstrate the merits of our approach.</p>
时间 2023-04-18 (Tuesday) 16:30-18:00 地点 中科院数学与系统科学研究院南楼N204,厦大经济楼D235(线下分会场),腾讯会议:47933486244
讲座语言 中文 主办单位 中国科学院大学经济与管理学院、中国科学院预测科学研究中心、厦门大学邹至庄经济研究院、NSFC“计量建模与经济政策研究”基础科学中心
承办单位 类型 系列讲座
联系人信息 主持人 洪永淼
专题网站 专题
主讲人简介 <p>孙佳婧,中国科学院大学经济与管理学院副教授,特许金融分析师,主要研究领域包括金融学、计量经济学、统计学等。曾在Journal of Time Series Analysis、Journal of Multivariate Analysis、Energy Economics、Economics Letters以及《应用概率统计》《统计研究》上发表多篇论文。</p> 期数 “邹至庄讲座”青年学者论坛(第52期)
系列讲座