An Efficient Approach to High-Dimensional Portfolio Optimization in Volatile Markets-厦门大学金融系

An Efficient Approach to High-Dimensional Portfolio Optimization in Volatile Markets
主讲人 杨松山 简介 <p>With the global financial market experiencing continuous expansion and escalating volatility, the development of efficient strategies for high-dimensional portfolio allocation has become critically important. Previous approaches to high-dimensional portfolio selection have mainly focused on large-cap companies, presenting challenges when confronted with datasets such as the Russell 2000 index. This paper aims to address portfolio optimization challenges within this context, using the 2020-2021 U.S. stock market as a case study. We propose a Dantzig-type portfolio optimization (DPO) model, and present efficient parallel computing algorithms based on asset-splitting. Through empirical analysis on the S&amp;P 500 and Russell 2000 indices, we demonstrate the consistent outperformance of the DPO portfolios over Markowitz mean-variance and Lasso-type mean-variance models, as well as corresponding ETFs, in terms of Sharpe and Sortino ratios. This outperformance is particularly pronounced for the Russell 2000 index. We provide a new effective approach for investors seeking to optimize their portfolios in complex market environments.</p>
时间 2024-05-27 (Monday) 16:40-18:10 地点 经济楼N302
讲座语言 中文 主办单位 厦门大学经济学院、王亚南经济研究院、邹至庄经济研究院
承办单位 类型 独立讲座
联系人信息 主持人 刘婧媛
专题网站 专题
主讲人简介 <p>杨松山,中国人民大学统计与大数据研究院助理教授、博士生导师。研究兴趣包括高维数据分析,模型算法优化,机器学习以及统计模型在金融学、生理学和心理学中的应用。在JASA、JOE、JCGS等国际统计学期刊发表十余篇文章。</p> 期数
独立讲座