主讲人 |
范青亮 |
简介 |
<p>Nonlinearity and endogeneity are prevalent challenges in causal analysis using observational data. This paper proposes an inference procedure for a nonlinear and endogenous marginal effect function, defined as the derivative of the nonparametric treatment function, with a primary focus on an additive model that includes high-dimensional covariates. Using the control function approach for identification, we implement a regularized nonparametric estimation to obtain an initial estimator of the model. Such an initial estimator suffers from two biases: the bias in estimating the control function and the regularization bias for the high-dimensional outcome model. Our key innovation is to devise the double bias correction procedure that corrects these two biases simultaneously. Building on this debiased estimator, we further provide a confidence band of the marginal effect function. Simulations and an empirical study of air pollution and migration demonstrate the validity of our procedures.</p> |
时间 |
2024-09-27 (Friday) 16:40-18:00 |
地点 |
经济楼N302 |
讲座语言 |
中文 |
主办单位 |
厦门大学经济学院、王亚南经济研究院、邹至庄经济研究院 |
承办单位 |
|
类型 |
独立讲座 |
联系人信息 |
|
主持人 |
王中雷 |
专题网站 |
|
专题 |
|
主讲人简介 |
<p>范青亮,香港中文大学经济学系副教授。2012年毕业于美国北卡罗来纳州立大学,获得经济学博士学位。主要研究领域为计量经济学。目前主要从事机器学习、因果推断、资产组合和定价预测模型的研究。在<em>Journal of the Royal Statistical Society Series B, Review of Economics and Statistics, Journal of Econometrics, Strategic Management Journal</em>等期刊发表多篇论文。</p>
<p> </p> |
期数 |
|