Reinforced Tail Quantile Regression-厦门大学金融系

Reinforced Tail Quantile Regression
主讲人 冷旋 简介 <p>Standard quantile regression suffers from high variability in the tail regions, particularly for heavy-tailed data. As the quantile level approaches 1 or 0, the estimator exhibits non-standard asymptotic behavior, posing challenges for statistical inference. In this paper, we propose a novel tail-reinforced quantile regression estimator that substantially reduces estimation variance by leveraging the power-law behavior inherent in heavy-tailed distributions. Our estimator is both consistent and asymptotically normal. To facilitate inference, we further introduce a sequential multiplier bootstrap procedure using multiple sets of random weights. Simulation studies demonstrate that our method yields notably narrower confidence intervals compared to standard quantile regression, while achieving near-exact coverage through the bootstrap procedure. We apply the proposed method to assess the marginal effect of education on upper income percentiles using a unique dataset from the Chinese Twins Survey. The results reveal a significantly positive effect of education in the upper tail, in contrast to existing approaches, which often yield insignificant effects accompanied by wide confidence intervals.</p>
时间 2025-06-03 (Tuesday) 16:30-18:00 地点 厦大经济楼C108(线下分会场)、中国科学院数学与系统科学研究院南楼N204、腾讯会议 ID:651 585 346
讲座语言 中文 主办单位 厦门大学邹至庄经济研究院、厦门大学-中国科学院计量建模与经济政策研究基础科学中心、中国科学院数学与系统科学研究院预测科学研究中心、中国科学院大学经济与管理学院
承办单位 类型 系列讲座
联系人信息 许老师,电话:2182991,邮箱:ysxu@xmu.edu.cn 主持人 洪永淼
专题网站 专题
主讲人简介 <p>冷旋,现为厦门大学经济学院与王亚南经济研究院副教授,博士毕业于中国科学技术大学统计学专业。研究方向包括面板分位数回归、极值统计、风险管理与强化学习等。多篇研究成果发表于Journal of Econometrics、Insurance: Mathematics and Economics、Extremes、Journal of Financial Econometrics等国际期刊。</p> 期数 “邹至庄讲座”青年学者论坛(第81期)
会议